Przejdź do treści

Eksperyment (WIKIPEDIA)

Historia > Czarnobyl

Przyczyny eksperymentu
Konieczność przeprowadzenia eksperymentu wynikła ze zmian w projekcie, które nie zostały wcześniej przetestowane.

Część energii elektrycznej wytwarzanej przez każdy blok energetyczny była zużywana na potrzeby własne tego bloku (zasilanie pomp wody chłodzącej, systemów kontrolnych itp.). Gdyby doszło do konieczności wyłączenia reaktora, energia byłaby zapewniana początkowo przez awaryjne agregaty prądotwórcze, a potem z zewnątrz (inne bloki lub elektrownie). Podczas budowy elektrowni okazało się, że awaryjne agregaty prądotwórcze uzyskują wystarczającą moc dopiero po 60 sekundach od ich włączenia (i wyłączenia reaktora), a turbogenerator po wyłączeniu reaktora dzięki sile rozpędu jest w stanie zapewniać wystarczającą moc zaledwie przez 15 sekund (później napięcie spadało poniżej wartości minimalnej wymaganej przez zasilane systemy). Oznaczało to, że przez 45 sekund systemy kontrolne i bezpieczeństwa reaktora nie byłyby zasilane.

W związku z tym istniały dwie możliwości:

  • zastosowanie agregatów prądotwórczych o krótszym czasie rozruchu,
  • przerobienie turbogeneratorów.


Wybrane zostało to drugie rozwiązanie – dołączono dodatkowy stabilizator napięcia, tak że turbogenerator miał dłużej (60 sekund) utrzymywać napięcie na minimalnym poziomie, ale nie sprawdzono wcześniej eksperymentalnie, czy wprowadzone przeróbki istotnie spełniają swoją funkcję. W czasie prób technicznych przed odbiorem wykonano podobny eksperyment, który wykrył problem z agregatami prądotwórczymi. Potem przerobiono turbogeneratory, ale zabrakło czasu (zbliżał się czas oficjalnego oddania reaktora do eksploatacji) na powtórzenie eksperymentu.


Cele i warunki eksperymentu
Test miał wykazać, jak długo w sytuacji awaryjnej, po ustaniu napędzania turbin generatorów parą z reaktora, energia kinetyczna ich ruchu obrotowego produkuje wystarczającą ilość energii elektrycznej dla potrzeb awaryjnego sterowania reaktorem. Czas ten potrzebny jest, by uruchomić system awaryjnego zasilania elektrycznego sterowania reaktorem – mały generator elektryczny napędzany przez silnik spalinowy.

Eksperyment miał polegać na znacznym zmniejszeniu mocy reaktora, następnie na zablokowaniu dopływu pary do turbin generatorów i mierzeniu czasu ich pracy po odcięciu w taki sposób zasilania.

Dla przeprowadzenia eksperymentu potrzebne było symulowanie sytuacji awaryjnej. W ramach przygotowań do testu technicy wyłączyli niektóre z systemów kontroli pracy reaktora, m.in. system automatycznego wyłączania reaktora w razie awarii. Wyłączenie tego systemu nie było konieczne dla sprawnego przeprowadzenia testu, ale zdecydowano się na to, aby w razie trudności z eksperymentem móc go powtórzyć.

Reaktory pracujące w czarnobylskiej elektrowni to reaktory typu RBMK-1000, które z powodu dodatniej reaktywności dla pary są niestabilne przy małej mocy. Wzrost ilości pary w rdzeniu powoduje zwiększanie wytwarzanej przez reaktor energii (mocy). Zwiększenie energii powoduje wzrost wytwarzania pary, co w konsekwencji powoduje dalszy wzrost wytwarzanej przez reaktor energii. Powoduje to niekontrolowany wzrost mocy reaktora.

Wynikało to z konstrukcji reaktorów. Mianowicie w typowym reaktorze wodno-ciśnieniowym woda pełni nie tylko funkcję chłodziwa, ale i moderatora (substancji zmniejszającej prędkość neutronów powstałych po rozpadzie jąder paliwa; konieczność stosowania moderatora wynika z tego, że neutrony o małej prędkości częściej niż powstające w wyniku rozszczepienia szybkie neutrony rozszczepiają następne jądra uranu). W takim reaktorze przyspieszenie reakcji łańcuchowej wywołuje wzrost temperatury, który powoduje wytworzenie większej ilości pary wodnej, która jest o wiele słabszym moderatorem od wody, co powoduje spadek liczby spowolnionych neutronów i zwiększoną ucieczkę neutronów poza rdzeń, i tym samym zmniejsza się liczba rozszczepianych jąder uranu, reakcja jądrowa słabnie. Natomiast w reaktorze RBMK-1000 moderatorem był głównie grafit, a niewielka ilość wody tylko chłodziwem. W tym reaktorze przyspieszenie reakcji łańcuchowej powodowało powstanie większej liczby wolnych neutronów, które były dalej w takim samym stopniu spowalniane przez grafit – neutrony te rozszczepiały więcej jąder uranu i tym samym reakcja jądrowa ulegała dalszemu przyspieszeniu.

Inną wadą reaktorów RBMK-1000 była konstrukcja prętów kontrolnych (prętów zawierających absorbujący neutrony bor), które miały oba końce wykonane z grafitu, po to by lepiej (mniejsze tarcie) przechodziły przez kanały w jądrze reaktora. Grafitowa końcówka wymagała stosunkowo powolnego ich opuszczania (do 20 sekund dla całej drogi), a ponadto w początkowej fazie dodatkowa ilość grafitu zawarta w prętach spowalniała jeszcze więcej neutronów, co przyspieszało reakcję łańcuchową.

Personel elektrowni nie był wystarczająco poinformowany o tych wadach reaktora i ich skutkach.

Przygotowania do eksperymentu
Reaktor miał zostać odłączony od sieci 25 kwietnia 1986. Dzienna zmiana pracowników została uprzedzona o planowanym doświadczeniu i zapoznała się z odpowiednimi procedurami. Nad przebiegiem eksperymentu i działaniem nowego systemu regulacji napięcia czuwać miała specjalnie powołana grupa specjalistów w dziedzinie elektryczności pod nadzorem Anatolija Diatłowa (zastępcy naczelnego inżyniera elektrowni i jedynego atomisty w jej kierownictwie)[notatka 1].

Zgodnie z planem eksperymentu od rana moc reaktora była stopniowo obniżana aż do poziomu 50%. Wtedy jedna z okolicznych elektrowni nieoczekiwanie przerwała produkcję energii. Aby zapobiec niedoborom elektryczności, dyspozytornia mocy w Kijowie zażądała opóźnienia wyłączenia reaktora do wieczora, kompensując popołudniowy wzrost zapotrzebowania na elektryczność.

O godzinie 23:04 z dyspozytorni nadeszła zgoda na wyłączenie reaktora. To opóźnienie było katastrofalne w skutkach. Dzienna zmiana, zaznajomiona z procedurami, dawno już zakończyła pracę. Zmiana popołudniowa szykowała się do odejścia, a nocna, która rozpoczynała pracę o północy, miała przejąć kontrolę reaktora już w trakcie eksperymentu. Zespół ekspertów również odczuwał zmęczenie bezczynnym oczekiwaniem od rana.

Według pierwotnego planu eksperyment miał być przeprowadzony za dnia, a zadaniem nocnej zmiany byłoby jedynie czuwanie nad systemem chłodzenia wyłączonego już reaktora. Dlatego też pracownicy, którzy rozpoczęli pracę o północy, nie byli przygotowani na napotkane warunki, a przekazane im opisy procedur pełne były ręcznych poprawek i skreśleń. Szefem zmiany nocnej był Aleksander Akimow, a operatorem odpowiedzialnym za obsługę reaktora – Leonid Toptunow, młody inżynier z niewielkim stażem pracy (ok. 3 miesięcy).

Początkowo rozpoczęto redukcję mocy cieplnej reaktora z nominalnej 3,2 GW do założonej 0,7–1,0 GW[8]. Jednakże niedoświadczony operator, Leonid Toptunow, za bardzo zredukował tę moc, która spadła do 10 MW. W tej sytuacji doszło do nadmiernego wydzielania się ksenonu-135, który silnie pochłania neutrony („zatrucie ksenonowe”). Reaktor nie posiadał odpowiednich przyrządów kontrolnych, które pozwoliłyby to wykryć. W przypadku zatrucia ksenonowego należy wyłączyć reaktor i poczekać około 24 h do ponownego uruchomienia (ksenon-135 jest izotopem krótko żyjącym).

Przy tak małej mocy przeprowadzenie eksperymentu było niemożliwe. Operatorzy, nieświadomi zatrucia ksenonowego, prawdopodobnie sądzili, że spadek mocy spowodowany był usterką jednego z automatycznych regulatorów. Aby zwiększyć moc reaktora, zaczęli usuwać kolejne pręty kontrolne, aż do momentu, gdy konieczne było wyłączenie automatycznych mechanizmów i ręczne przesunięcie prętów do pozycji znacznie przekraczającej przyjęte normy.

Reaktor powoli zwiększył moc do 200 MW, czyli poziomu trzykrotnie niższego niż wymagany do eksperymentu. Mimo tego nie przerwano go – na jego kontynuację nalegał Diatłow, który lekceważył zastrzeżenia operatorów (którzy nie dorównywali mu ani pozycją ani doświadczeniem zawodowym). Zgodnie z planem 26 kwietnia o godzinie 1:05 zwiększono obieg wody chłodzącej. Przepływ chłodziwa przekroczył górny limit o godzinie 1:16. Zwiększone chłodzenie obniżyło temperaturę rdzenia reaktora, a co za tym idzie – ilość pary wodnej. Woda w stanie ciekłym pochłania więcej neutronów niż para, w efekcie czego moc reaktora ponownie spadła. Zrekompensowano to jeszcze dalszym wysunięciem prętów kontrolnych.

W wyniku tych działań reaktor został doprowadzony do skrajnie niestabilnego stanu i pozbawiony zupełnie kontroli za pomocą służących do tego prętów. Jedynym czynnikiem hamującym pracę reaktora był wysoki poziom ksenonu w paliwie jądrowym. W tej sytuacji automatyczny system bezpieczeństwa powinien całkowicie wygasić reaktor, jednakże operatorzy zadecydowali o wyłączeniu tego zabezpieczenia.


Wróć do spisu treści